Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216163

RESUMO

Perturbations of cholesterol metabolism have been linked to neurodegenerative diseases. Glia-neuron crosstalk is essential to achieve a tight regulation of brain cholesterol trafficking. Adequate cholesterol supply from glia via apolipoprotein E-containing lipoproteins ensures neuronal development and function. The lipolysis-stimulated lipoprotein receptor (LSR), plays an important role in brain cholesterol homeostasis. Aged heterozygote Lsr+/- mice show altered brain cholesterol distribution and increased susceptibility to amyloid stress. Since LSR expression is higher in astroglia as compared to neurons, we sought to determine if astroglial LSR deficiency could lead to cognitive defects similar to those of Alzheimer's disease (AD). Cre recombinase was activated in adult Glast-CreERT/lsrfl/fl mice by tamoxifen to induce astroglial Lsr deletion. Behavioral phenotyping of young and old astroglial Lsr KO animals revealed hyperactivity during the nocturnal period, deficits in olfactory function affecting social memory and causing possible apathy, as well as visual memory and short-term working memory problems, and deficits similar to those reported in neurodegenerative diseases, such as AD. Furthermore, GFAP staining revealed astroglial activation in the olfactory bulb. Therefore, astroglial LSR is important for working, spatial, and social memory related to sensory input, and represents a novel pathway for the study of brain aging and neurodegeneration.


Assuntos
Astrócitos/metabolismo , Transtornos da Memória/metabolismo , Memória de Curto Prazo , Receptores de Lipoproteínas/metabolismo , Olfato , Animais , Colesterol/metabolismo , Transtornos da Memória/genética , Camundongos , Receptores de Lipoproteínas/genética
2.
Environ Toxicol Pharmacol ; 80: 103486, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32891758

RESUMO

Chlordecone (CLD) is a chlorinated persistent organic pollutant (POP) whose presence despite the 1993 ban in agriculture areas has caused numerous public health concerns. CLD accumulates in the liver, and the CLD metabolite, chlordecol (CLD-OH) is found in bile, an important site of excretion for cholesterol transported to the liver via lipoproteins. Here, we studied the real-time molecular interaction between CLD and CLD-OH with human serum lipoproteins, LDL and HDL. While no interaction was detected between CLD and HDL, or between CLD-OH and LDL, relatively high specific affinities were observed between CLD and CLD-OH for LDL and HDL, respectively.


Assuntos
Clordecona/química , Inseticidas/química , Lipoproteínas HDL/química , Lipoproteínas LDL/química , Clordecona/metabolismo , Humanos , Inseticidas/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica
3.
Commun Biol ; 1: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271916

RESUMO

The health benefits of chronic caloric restriction resulting in lifespan extension are well established in many short-lived species, but the effects in humans and other primates remain controversial. Here we report the most advanced survival data and the associated follow-up to our knowledge of age-related alterations in a cohort of grey mouse lemurs (Microcebus murinus, lemurid primate) exposed to a chronic moderate (30%) caloric restriction. Compared to control animals, caloric restriction extended lifespan by 50% (from 6.4 to 9.6 years, median survival), reduced aging-associated diseases and preserved loss of brain white matter in several brain regions. However, caloric restriction accelerated loss of grey matter throughout much of the cerebrum. Cognitive and behavioural performances were, however, not modulated by caloric restriction. Thus chronic moderate caloric restriction can extend lifespan and enhance health of a primate, but it affects brain grey matter integrity without affecting cognitive performances.

4.
Front Mol Neurosci ; 10: 211, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744197

RESUMO

Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD). However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD.

5.
Aging (Albany NY) ; 9(1): 173-186, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28039490

RESUMO

Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=-0.62) or septum (rs=-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.


Assuntos
Atrofia/patologia , Glicemia/análise , Córtex Cerebral/patologia , Disfunção Cognitiva/sangue , Jejum/sangue , Memória Espacial/fisiologia , Fatores Etários , Animais , Atrofia/sangue , Atrofia/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Cheirogaleidae , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Tamanho do Órgão/fisiologia
6.
Hum Mol Genet ; 24(21): 5965-76, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26358780

RESUMO

Alzheimer's disease (AD) is characterized by both amyloid and Tau pathologies. The amyloid component and altered cholesterol metabolism are closely linked, but the relationship between Tau pathology and cholesterol is currently unclear. Brain cholesterol is synthesized in situ and cannot cross the blood-brain barrier: to be exported from the central nervous system into the blood circuit, excess cholesterol must be converted to 24S-hydroxycholesterol by the cholesterol 24-hydroxylase encoded by the CYP46A1 gene. In AD patients, the concentration of 24S-hydroxycholesterol in the plasma and the cerebrospinal fluid are lower than in healthy controls. The THY-Tau22 mouse is a model of AD-like Tau pathology without amyloid pathology. We used this model to investigate the potential association between Tau pathology and CYP46A1 modulation. The amounts of CYP46A1 and 24S-hydroxycholesterol in the hippocampus were lower in THY-Tau22 than control mice. We used an adeno-associated virus (AAV) gene transfer strategy to increase CYP46A1 expression in order to investigate the consequences on THY-Tau22 mouse phenotype. Injection of the AAV-CYP46A1 vector into the hippocampus of THY-Tau22 mice led to CYP46A1 and 24S-hydroxycholesterol content normalization. The cognitive deficits, impaired long-term depression and spine defects that characterize the THY-Tau22 model were completely rescued, whereas Tau hyperphosphorylation and associated gliosis were unaffected. These results argue for a causal link between CYP46A1 protein content and memory impairments that result from Tau pathology. Therefore, CYP46A1 may be a relevant therapeutic target for Tauopathies and especially for AD.


Assuntos
Transtornos da Memória/enzimologia , Esteroide Hidroxilases/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Colesterol 24-Hidroxilase , Modelos Animais de Doenças , Gliose/metabolismo , Hipocampo/enzimologia , Humanos , Hidroxicolesteróis/metabolismo , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Esteroide Hidroxilases/genética , Tauopatias/genética , Proteínas tau
7.
Brain ; 138(Pt 8): 2383-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26141492

RESUMO

Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of ß-C-terminal fragment and amyloid-ß peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-ß peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Colesterol 24-Hidroxilase , Feminino , Homeostase/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo
8.
Eur J Neurosci ; 41(10): 1345-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25847620

RESUMO

Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour.


Assuntos
Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Colesterol/toxicidade , Epilepsia/patologia , Células Piramidais/patologia , Células Piramidais/fisiologia , Animais , Astrócitos/metabolismo , Região CA3 Hipocampal/metabolismo , Morte Celular , Colesterol/metabolismo , Colesterol 24-Hidroxilase , Dependovirus/fisiologia , Eletroencefalografia , Epilepsia/etiologia , Feminino , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fosforilação , Células Piramidais/metabolismo , RNA Interferente Pequeno/genética , Esclerose , Esteroide Hidroxilases/farmacologia , Proteínas tau/metabolismo
9.
Front Behav Neurosci ; 8: 446, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25620921

RESUMO

Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition (NOR) memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.

10.
Breast Cancer Res ; 10(6): R101, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19055754

RESUMO

INTRODUCTION: Basal-like carcinomas (BLCs) and human epidermal growth factor receptor 2 overexpressing (HER2+) carcinomas are the subgroups of breast cancers that have the most aggressive clinical behaviour. In contrast to HER2+ carcinomas, no targeted therapy is currently available for the treatment of patients with BLCs. In order to discover potential therapeutic targets, we aimed to discover deregulated signalling pathways in human BLCs. METHODS: In this study, we focused on the oncogenic phosphatidylinositol 3-kinase (PI3K) pathway in 13 BLCs, and compared it with a control series of 11 hormonal receptor negative- and grade III-matched HER2+ carcinomas. The two tumour populations were first characterised by immunohistochemistry and gene expression. The PI3K pathway was then investigated by gene copy-number analysis, gene expression profiling and at a proteomic level using reverse-phase protein array technology and tissue microarray. The effects of the PI3K inhibition pathway on proliferation and apoptosis was further analysed in three human basal-like cell lines. RESULTS: The PI3K pathway was found to be activated in BLCs and up-regulated compared with HER2+ tumours as shown by a significantly increased activation of the downstream targets Akt and mTOR (mammalian target of rapamycin). BLCs expressed significantly lower levels of the tumour suppressor PTEN and PTEN levels were significantly negatively correlated with Akt activity within that population. PTEN protein expression correlated significantly with PTEN DNA copy number and more importantly, reduced PTEN DNA copy numbers were observed specifically in BLCs. Similar to human samples, basal-like cell lines exhibited an activation of PI3K/Akt pathway and low/lack PTEN expression. Both PI3K and mTOR inhibitors led to basal-like cell growth arrest. However, apoptosis was specifically observed after PI3K inhibition. CONCLUSIONS: These data provide insight into the molecular pathogenesis of BLCs and implicate the PTEN-dependent activated Akt signalling pathway as a potential therapeutic target for the management of patients with poor prognosis BLCs.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasia de Células Basais/genética , Neoplasia de Células Basais/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Western Blotting , Neoplasias da Mama/patologia , Proliferação de Células , Ativação Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasia de Células Basais/patologia , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Análise Serial de Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Serina-Treonina Quinases TOR , Análise Serial de Tecidos , Células Tumorais Cultivadas
11.
J Immunol ; 177(4): 2167-74, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16887976

RESUMO

Little is known about the in vivo conditions in which CD4+CD25+ regulatory T cells (T(reg)) exert their suppressive effect in nonlymphopenic mice. To this end, we analyzed T(reg)-mediated suppression of expansion and cytokine production at different levels of Ag-specific CD4+CD25- T cell activation. Using Ab-mediated depletion of endogenous T(reg), we show that basal immunosuppression is dependent on effector T cell activation. These polyclonal T(reg), which were poorly activated in our immunization conditions, were effective in weak but not high T cell activation context. In contrast, the same immunization conditions led to proliferation of cotransferred Ag-specific T(reg). Those efficiently inhibited T cell proliferation and cytokine production even in strong T cell activation context. Interestingly, T(reg) selectively suppressed expansion or cytokine production depending on the experimental approach. The importance of the immune context for efficient suppression is further supported by the observation that T(reg) depletion exacerbated diabetes of NOD mice only at the early stage of the disease. Overall, our study suggests that T(reg)-mediated suppression depends on the relative activation of T(reg) and effector T cells in vivo. This balance may be a critical factor in the regulation of immune responses.


Assuntos
Tolerância Imunológica , Ativação Linfocitária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Envelhecimento/genética , Envelhecimento/imunologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/fisiopatologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Epitopos de Linfócito T/fisiologia , Tolerância Imunológica/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Especificidade da Espécie
12.
Eur J Immunol ; 36(4): 817-27, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16525991

RESUMO

CD4+ CD25+ regulatory T cells (Treg) play a major role in the prevention of autoimmune diseases. Converging evidence indicates that Treg specific for self-antigens expressed by target tissues have a greater therapeutic potential than polyclonal Treg. Therefore, the selective expansion of rare self-antigen-specific T(reg) naturally present in a polyclonal repertoire of Treg is of major importance. In this work, we investigated the potential of different dendritic cell (DC) subsets to expand antigen-specific Treg in mice. The in vitro selective expansion of rare islet-specific Treg from polyclonal Treg could only be achieved efficiently by stimulation with CD8+ splenic DC presenting islet antigens. These islet-specific Treg exerted potent bystander suppression on diabetogenic T cells and prevented type 1 diabetes. This approach opens new perspectives for cell therapy of autoimmune diseases.


Assuntos
Autoantígenos/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células , Diabetes Mellitus Experimental/terapia , Feminino , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores de Interleucina-2/imunologia , Receptores de Interleucina-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...